Chiral symmetry on the edge of two-dimensional symmetry protected topological phases
نویسندگان
چکیده
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Symmetry protected topological (SPT) states are short-range entangled states with symmetry. The boundary of a SPT phases has either gapless excitations or degenerate ground states, around a gapped bulk. Recently, we proposed a systematic construction of SPT phases in interacting bosonic systems, however it is not very clear what is the form of the low-energy excitations on the gapless edge. In this paper, we answer this question for two-dimensional (2D) bosonic SPT phases with Z N and U(1) symmetry. We find that while the low-energy modes of the gapless edges are nonchiral, symmetry acts on them in a " chiral " way, i.e., acts on the right movers and the left movers differently. This special realization of symmetry protects the gaplessness of the otherwise unstable edge states by prohibiting a direct scattering between the left and right movers. Moreover, understanding of the low-energy effective theory leads to experimental predictions about the SPT phases. In particular, we find that all the 2D U(1) SPT phases have even integer quantized Hall conductance.
منابع مشابه
اثر برهمکنش اسپین مدار یکنواخت و میدان مغناطیسی یکنواخت بر خواص توپولوژیکی یک نانو سیم یک بعدی کوانتومی
We theoretically demonstrate the interplay of uniform spin-orbit coupling and uniform Zeeman magnetic field on the topological properties of one-dimensional double well nano wire which is known as Su-Schrieffer-Heeger (SSH) model. The system in the absence of Zeeman magnetic field and presence of uniform spin-orbit coupling exhibits topologically trivial/non–trivial insulator depending on the h...
متن کاملCounter-propagating edge modes and topological phases of a kicked quantum Hall system.
A periodically driven quantum Hall system in a fixed magnetic field is found to exhibit a series of phases featuring anomalous edge modes with the "wrong" chirality. This leads to pairs of counter-propagating chiral edge modes at each edge, in sharp contrast to stationary quantum Hall systems. We show that the pair of Floquet edge modes are protected by the chiral (sublattice) symmetry, and tha...
متن کاملTopology, Crystallized (Experiments): P. Dziawa et al., arXiv:1206.1705; S.-Y. Xu et al., arXiv:1206.2088
A key difference between quantum Hall phases induced by a magnetic field and topological insulator phases induced by spin-orbit coupling is that the latter depend crucially on a symmetry, time reversal. The action of time-reversal symmetry on electrons leads to a new kind of topological invariant in twodimensional systems [1] that takes only two possible values: if this “Z2 invariant” is even, ...
متن کاملDynamical generation of Floquet Majorana flat bands in s-wave superconductors
We present quantum control techniques to engineer flat bands of symmetry-protected Majorana edge modes in s-wave superconductors. Specifically, we show how periodic control may be employed for designing time-independent effective Hamiltonians, which support Floquet Majorana flat bands, starting from equilibrium conditions that are either topologically trivial or only support individual Majorana...
متن کاملSymmetry fractionalization: symmetry-protected topological phases of the bond-alternating spin-1/2 Heisenberg chain.
We study different phases of the one-dimensional bond-alternating spin-1/2 Heisenberg model by using the symmetry fractionalization mechanism. We employ the infinite matrix-product state representation of the ground state (through the infinite-size density matrix renormalization group algorithm) to obtain inequivalent projective representations and commutation relations of the (unbroken) symmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012